Capacitor

- Parallel plates, separated by an insulator, so no charge flows between the plates. Impose a time-varying voltage drop:
\rightarrow time-varying electric field
\rightarrow time-varying displacement current
- Capacitor equation: $\quad i(t)=C \frac{d v(t)}{d t}$
- Units: $\mathrm{v}(\mathrm{t})$ is volts, $\mathrm{i}(\mathrm{t})$ is amps, and C is farads [F]

Look at the capacitor equation again:

$$
i(t)=C \frac{d v(t)}{d t}
$$

Suppose $v(t)$ is constant. Then $i(t)=$
$\mathbf{X}^{\text {A. }}$ B. ${ }^{o}$
X C. a constant

So, if the voltage drop across the capacitor is constant, its current is 0 , so the capacitor can be replaced by

X A. a short circuit
B. an open circuit
\mathbf{X} C. a constant

Capacitor

- If the voltage drop across a capacitor is constant, the current is o, so the capacitor can be replaced by an OPEN CIRCUIT.
- Look at the capacitor equation again: $i(t)=C \frac{d v(t)}{d t}$
- Suppose there is a discontinuity in $v(t)$ - that is, at some value of t, the voltage jumps instantaneously. At this value of t, the derivative of the voltage is infinite. Therefore the current is infinite! NOT POSSIBLE.
- Thus, the voltage drop across a capacitor is continuous for all time.

The voltage drop across a capacitor is

 described as$$
\begin{aligned}
& v(t)=V_{o}, \quad t<0 \\
& v(t)=15 e^{-250 t}-10 e^{-1000 t} \mathrm{~V}, \quad t \geq 0
\end{aligned}
$$

This expression for the capacitor voltage is valid only if the value of V_{o} is

XA. o V
XB. 25 V
C. 5 V

Capacitor

- The equation for voltage in terms of current:

$$
\begin{aligned}
& i(t)=C \frac{d v(t)}{d t} \quad \Rightarrow \quad i(t) d t=C d v(t) \\
& \Rightarrow \quad \int_{t_{0}}^{t} i(\tau) d \tau=C \int_{v\left(t_{0}\right)}^{v(t)} d x \\
& \Rightarrow \quad v(t)=\frac{1}{C} \int_{t_{0}}^{t} i(\tau) d \tau+v\left(t_{o}\right)
\end{aligned}
$$

Capacitor

- Power and energy

$$
\begin{aligned}
& p(t)=v(t) i(t)=C v(t) \frac{d v(t)}{d t} \quad \text { (passive sign convention!) } \\
& p(t)=\frac{d w(t)}{d t}=C v(t) \frac{d v(t)}{d t} \\
& \Rightarrow \quad d w(\tau)=C v(\tau) d v(\tau) \\
& \Rightarrow \quad \int_{0}^{w(t)} d x=C \int_{0}^{v(t)} y(\tau) d \tau \\
& \Rightarrow \quad w(t)=\frac{1}{2} C v(t)^{2}
\end{aligned}
$$

Capacitor

$>$ Capacitors, like inductors, are energy storage devices!

- If the initial voltage drop across the capacitor is nonzero, the capacitor is storing energy.

Suppose the initial voltage drop across a 4 $\mu \mathrm{F}$ capacitor is 10 V . The initial energy stored in the capacitor is

X A. $400 \mu \mathrm{~J}$
B. $200 \mu \mathrm{~J}$
X C. $20 \mu \mathrm{~J}$

Capacitor

- Example 6.5 - find the voltage, power, and energy

$$
i(t)= \begin{cases}0, & t \leq 0 \\ 5000 t \mathrm{~A}, & 0 \leq t \leq 20 \mu \mathrm{~S} \\ 0.2-5000 t \mathrm{~A}, & 20 \leq t \leq 40 \mu \mathrm{~S} ; \\ 0, & t \geq 40 \mu \mathrm{~s}\end{cases}
$$

For $t<0$:

$$
v(t)=0 \mathrm{~V} ; \quad p(t)=0 \mathrm{~W} ; \quad w(t)=0 \mathrm{~J}
$$

For $0 \leq t \leq 20 \mu \mathrm{~s}$:

$$
\begin{aligned}
& \begin{aligned}
v(t) & =\frac{1}{0.2 \mu} \int_{0}^{t} 5000 x d x+v(0)=\left.\frac{1}{0.2 \mu} \frac{5000 x^{2}}{2}\right|_{0} ^{t}=12.5 \times 10^{9} t^{2} \mathrm{~V} \\
p(t) & =v(t) i(t)=\left(12.5 \times 10^{9} t^{2}\right)(5000 t)=62.5 \times 10^{12} t^{3} \mathrm{~W} \\
w(t) & =\frac{1}{2}(0.2 \mu)\left(12.5 \times 10^{9} t^{2}\right)^{2}=15.625 \times 10^{12} t^{4} \mathrm{~J}
\end{aligned} \\
& \text { At } t=20 \mu \mathrm{~s}, \quad v(20 \mu \mathrm{~s})=12.5 \times 10^{9}(20 \mu)^{2}=5 \mathrm{~V}
\end{aligned}
$$

Capacitor

- Example 6.5, continued

$$
i(t)= \begin{cases}0, & t \leq 0 \\ 5000 t \mathrm{~A}, & 0 \leq t \leq 20 \mu \mathrm{~s} \\ 0.2-5000 t \mathrm{~A}, & 20 \leq t \leq 40 \mu \mathrm{~s} \\ 0, & t \geq 40 \mu \mathrm{~s}\end{cases}
$$

For $20 \mu \mathrm{~s} \leq t \leq 40 \mu \mathrm{~s}$:

$$
\left.\begin{array}{l}
\begin{array}{rl}
v(t) & =\frac{1}{0.2 \mu} \int_{20 \mu}^{t}(0.2-5000 x) d x+v(20 \mu) \\
& =\frac{1}{0.2 \mu}\left[0.2 x-\frac{5000 x^{2}}{2}\right]_{0}^{t}+5 \\
& =\left(10^{6} t-12.5 \times 10^{9} t^{2}-10\right) \mathrm{V}
\end{array} \\
p(t)=v(t) i(t) ; \quad w(t)=\frac{1}{2} C v(t)^{2}
\end{array}\right\}
$$

Capacitor

- Example 6.5, continued

$$
i(t)= \begin{cases}0, & t \leq 0 \\ 5000 t \mathrm{~A}, & 0 \leq t \leq 20 \mu \mathrm{~S} \\ 0.2-5000 t \mathrm{~A}, & 20 \leq t \leq 40 \mu \mathrm{~s} ; \\ 0, & t \geq 40 \mu \mathrm{~s}\end{cases}
$$

For $t \geq 40 \mu \mathrm{~s}$:

$$
\begin{aligned}
& v(t)=\frac{1}{0.2 \mu} \int_{40 \mu}^{t} 0 d x+v(40 \mu)=10 \mathrm{~V} \\
& p(t)=v(t) i(t)=0 \mathrm{~W} \\
& w(t)=\frac{1}{2}(0.2 \mu)(10)^{2}=10 \mu \mathrm{~J}!
\end{aligned}
$$

During the interval between 0 and 40μ s, the power is positive (absorbed), energy is stored and "trapped" by the capacitor, so even when the current goes to 0 , the voltage stays at 10 V and the energy is non-zero.

Capacitor

- Example 6.5, continued

Capacitors in series and parallel

$\mathrm{KCL}: \quad i=i_{1}+i_{2}+i_{3}=C_{1} \frac{d v}{d t}+C_{2} \frac{d v}{d t}+C_{3} \frac{d v}{d t}$
$=\left(C_{1}+C_{2}+C_{3}\right) \frac{d v}{d t}=C_{e q} \frac{d v}{d t}$
Capacitors in parallel ADD.

Capacitors in series and parallel

$$
\begin{aligned}
\mathrm{KVL}: \quad v= & v_{1}+v_{2}+v_{3}=\frac{1}{C_{1}} \int_{t_{o}}^{t} i(\tau) d \tau+v_{1}\left(t_{o}\right) \\
& +\frac{1}{C_{2}} \int_{t_{o}}^{t} i(\tau) d \tau+v_{2}\left(t_{o}\right) \\
& +\frac{1}{C_{3}} \int_{t_{o}}^{t} i(\tau) d \tau+v_{3}\left(t_{o}\right) \\
= & \left(\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}\right) \int_{t_{o}}^{t} i(\tau) d \tau \\
& +\left[v_{1}\left(t_{o}\right)+v_{2}\left(t_{o}\right)+v_{3}\left(t_{o}\right)\right] \\
= & \frac{1}{C_{e q}} \int_{t_{o}}^{t} i(\tau) d \tau+v_{e q}\left(t_{o}\right)
\end{aligned}
$$

Capacitors combine in series like resistors or inductors combine in parallel.

Find the equivalent capacitance for the circuit below, assuming $v_{1}=12 \mathrm{~V}$ and $v_{2}=$ -8 V.

$$
\begin{aligned}
& \text { A. } C_{e q}=4 \mu \mathrm{~F}, \mathrm{v}_{\mathrm{eq}}=4 \mathrm{~V} \\
& \mathbf{X} \text { B. } C_{e q}=9 \cdot 5 \mu \mathrm{~F}, \mathrm{v}_{\mathrm{eq}}=4 \mathrm{~V} \\
& \mathbf{X} \cdot \mathrm{C}_{\mathrm{eq}}=4 \mu \mathrm{~F}, \mathrm{v}_{\mathrm{eq}}=20 \mathrm{~V}
\end{aligned}
$$

Inductor and Capacitor comparison

	Inductor	Capacitor
Symbol	Henries $[\mathrm{H}]$	\bullet
Units	$v(t)=L \frac{d i(t)}{d t}$	$i(t)=C \frac{d v(t)}{d t}$
Describing equation	$i(t)=\frac{1}{L} \int_{t_{o}}^{t} v(\tau) d \tau+i\left(t_{o}\right)$	$v(t)=\frac{1}{C} \int_{t_{o}}^{t} i(\tau) d \tau+v\left(t_{o}\right)$
Other equation	$i\left(t_{o}\right)$	$v\left(t_{0}\right)$
Initial condition	Farads $[\mathrm{F}]$	
Behavior with const. source	If $i(t)=I, v(t)=o$ \rightarrow short circuit	If $v(t)=V, i(t)=o$ \rightarrow open circuit
Continuity requirement	$i(t)$ is continuous so $v(t)$ is finite	$v(t)$ is continuous so $i(t)$ is finite

Inductor and Capacitor comparison

	Inductor	Capacitor
Power	$p(t)=v(t) i(t)=L i(t) \frac{d i(t)}{d t}$	$p(t)=v(t) i(t)=C v(t) \frac{d v(t)}{d t}$
Energy	$w(t)=\frac{1}{2} L i(t)^{2}$	$w(t)=\frac{1}{2} C v(t)^{2}$
Initial energy	$w_{o}(t)=\frac{1}{2} L i\left(t_{o}\right)^{2}$	$w_{o}(t)=\frac{1}{2} C v\left(t_{o}\right)^{2}$
Trapped energy	$w(\infty)=\frac{1}{2} L i(\infty)^{2}$	$w(\infty)=\frac{1}{2} C v(\infty)^{2}$
Series- connecte d	$L_{e q}=L_{1}+L_{2}+L_{2}$ $i_{e q}\left(t_{o}\right)=i\left(t_{o}\right)$	$\frac{1}{C_{e q}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}$ $v_{e q}\left(t_{o}\right)=v_{1}\left(t_{o}\right)+v_{2}\left(t_{o}\right)+v_{3}\left(t_{o}\right)$
Parallel- connecte d	$\frac{1}{L_{e q}}=\frac{1}{L_{1}}+\frac{1}{L_{2}}+\frac{1}{L_{3}}$ $i_{e q}\left(t_{o}\right)=i_{1}\left(t_{o}\right)+i_{2}\left(t_{o}\right)+i_{3}\left(t_{o}\right)$	$C_{e q}=C_{1}+C_{2}+C_{2}$ $v_{e q}\left(t_{o}\right)=v\left(t_{o}\right)$

