# ECE 281 Electrical Circuits and Instrumentation + Laboratory Fall 2016/2017 LAB # 7

14**.11.2016** 

**Objective:** 

- 1. To study R/2R ladder network
- 2. Find the internal resistance of a battery cell.

### 1. To study R/2R ladder network (50 Points)

#### **Procedure:**

- 1. Construct the ladder circuit shown in Figure 1 with three input nodes.
- 2. Use a digital multi-meter to measure voltages and resistances.



Figure 1

- **3.** When switch is "ON" connect A, B and C to 10V. When switch is "OFF" connect points to the ground.
- **4.** Construct the Table 1 by filling the voltage values for the given switch position combinations.

| Switch 1 (SW1) | Switch 2 (SW2) | Switch 3 (SW1) | Voltage |  |
|----------------|----------------|----------------|---------|--|
| OFF            | OFF            | OFF            |         |  |
| OFF            | OFF            | ON             |         |  |
| OFF            | ON             | OFF            |         |  |
| OFF            | ON             | ON             |         |  |
| ON             | OFF            | OFF            |         |  |
| ON             | OFF            | ON             |         |  |
| ON             | ON             | OFF            |         |  |
| ON             | ON             | ON             |         |  |

### Table 1

- 5. Now, remove the power supply and construct the Table 2.
- 6. "ON" do not connect node to anywhere. "OFF" connect node to the ground.

| Switch 1 (SW1) | Switch 2 (SW2) | Switch 3 (SW1) | Resistance |
|----------------|----------------|----------------|------------|
| OFF            | OFF            | OFF            |            |
| OFF            | OFF            | ON             |            |
| OFF            | ON             | OFF            |            |
| OFF            | ON             | ON             |            |
| ON             | OFF            | OFF            |            |
| ON             | OFF            | ON             |            |
| ON             | ON             | OFF            |            |
| ON             | ON             | ON             |            |

7. Check the following values

Lowest voltage  $\cong 0$ 

Highest Voltage =  $\frac{2^{N} - 1}{2^{N}}$ . V<sub>source</sub> N = number of switch points

## 2. Find the internal resistance(R<sub>s</sub>) of a battery cell.(50 Points)

### **Procedure:**

**1.** Construct the circuit shown in Figure 2.



Figure 2

- 2. Use a digital multi-meter to measure voltages and currents.
- 3. With the switch (SW1) "OPEN" measure voltage between point A and ground (E).
- 4. "CLOSE" switch, again measure voltage between point A and ground ( $V_L$ ).
- 5. Measure current between A-B( $I_L$ ).
- 6. Calculate the internal resistance of a battery cell  $(R_s)$
- 7. Construct Table 3. Draw the theoretically correct circuit. By replacing E with  $V_L$  and  $R_s$ .

| Voltage with SW1 OPEN                                      |    |  | <u>Circuit Box</u> |
|------------------------------------------------------------|----|--|--------------------|
| Voltage with SW1 is CLOSE                                  |    |  |                    |
| Current out of the cell                                    | IL |  |                    |
| $\frac{\text{Calculation Box}}{R_s = \frac{E - V_L}{I_L}}$ |    |  |                    |