Response of First-Order RL/RC Circuits

Objectives:

- Natural response of RL/RC circuits
- Step response of RL/RC circuits
- Sequential switching in first-order circuits

RL Natural Response

The problem: Given an initial current $i(0)$ through L at $t=0$, find $i(t)$ for $t \geq 0$.

Note: this is the "natural" response of this circuit because for $t \geq 0$ there is no independent source in the circuit the response is due only to the "nature" of the components and their interconnection.

RL Natural Response

$$
\mathrm{KVL}: \quad L \frac{d i(t)}{d t}+R i(t)=0
$$

This equation is a
-First-order (the highest derivative is a first derivative) -Homogeneous (the right-hand side is 0)

- Ordinary differential equation
-With constant coefficients

The solution to the differential equation, repeated below, must be a function whose first-derivative has the same form as the function. Which one of these functions exhibits this behavior?

$$
\text { KVL: } \quad L \frac{d i(t)}{d t}+\operatorname{Ri}(t)=0
$$

2 A. $\mathrm{K} \sin \omega t$
B. $K \mathrm{e}^{-a t}$

X c. $K t^{2}$

RL Natural Response

$\mathrm{KVL}: \quad L \frac{d i(t)}{d t}+\operatorname{Ri}(t)=0$
Let $i(t)=e^{-a t} \quad$ and $\quad \frac{d i(t)}{d t}=-a e^{-a t}$
Substituting, $\quad L\left(-a e^{-a t}\right)+\operatorname{Re}^{-a t}=0$
Rearranging, $\quad(R-a L) e^{-a t}=0 \quad$ so $\quad R-a L=0$
Solving, $\quad a=R / L$
But $\quad i(0)=I_{s} \quad$ so $\quad i(t)=I_{s} e^{-(R / L) t}, \quad t \geq 0$
Check:

$$
\begin{gathered}
L(-R / L) I_{s} e^{-(R / L) t}+R I_{s} e^{-(R / L) t} \\
=-R I_{s} e^{-(R / L) t}+R I_{s} e^{-(R / L) t}=0 \\
i(0)=I_{s} e^{-(R / L)(0)}=I_{s}
\end{gathered}
$$

Here is one circuit that can be used to establish the initial current through the inductor. For $\mathrm{t}<0$, the inductor can be replaced by

X A. An open circuit
B. A short circuit
\mathbf{x}
C. A resistor

To evaluate the current in the inductor for $\mathrm{t}<0$, close the switch and replace the inductor with a short circuit. The current from bottom to top in the short circuit is

$$
\begin{aligned}
& \mathbf{X} \text { A. }{ }^{-I_{S}} \\
& \text { B. } \mathrm{RI}_{\mathrm{S}} /\left(\mathrm{R}+\mathrm{R}_{0}\right) \\
& \text { C. } \mathrm{I}_{\mathrm{S}}
\end{aligned}
$$

RL Natural Response

$t<0$:

$t \geq 0$:

RC Natural Response

The problem: Find $v(t)$ for $t \geq 0$. Note that the circuit to the left of the capacitor establishes an initial voltage drop $v(0)$ across C at $t=0$.

Here is the circuit for the RC natural response problem. For $t<0$, the capacitor can be replaced by
A. An open circuit

X B. A short circuit
X C. A constant current

To evaluate the voltage drop across the capacitor for $t<0$, put the switch in the "a" position and replace the capacitor with an open circuit. The voltage drop across the open circuit, positive at the top, is

$$
\begin{array}{lll}
\text { A. } V_{g} \\
\mathbf{X} & \text { B. }-V_{g} \\
\mathbf{X} & \text { C. } & R_{g} /\left(R+R_{1}\right)
\end{array}
$$

RC Natural Response

There is an open circuit here, so the current in this circuit is 0 , and the voltage drop across R_{I} is 0 . Thus,

$$
v=V_{g}, \quad t<0
$$

Remember the continuity requirement for capacitors the voltage drop across the capacitor must be continuous everywhere, so that the current through the capacitor remains finite. Thus,

$$
v(0)=V_{g}
$$

RC Natural Response

$t \geq 0$:

$\mathrm{KCL}: \quad C \frac{d v(t)}{d t}+\frac{v(t)}{R}=0$

Let $\quad v(t)=e^{-a t} \quad$ and $\quad \frac{d v(t)}{d t}=-a e^{-a t}$
Substituting, $\quad C\left(-a e^{-a t}\right)+e^{-a t} / R=0$
Rearranging, $\quad(1 / R-a C) e^{-a t}=0 \quad$ so $\quad 1 / R-a C=0$
Solving, $\quad a=1 / R C$
But $\quad v(0)=V_{g} \quad$ so $\quad v(t)=V_{g} e^{-(1 / R C) t}, \quad t \geq 0$

RL/RC Natural Response

KVL: $\quad L \frac{d i(t)}{d t}+R i(t)=0$

$$
i(0)=I_{s}
$$

$$
i(t)=I_{s} e^{-(R / L) t}, \quad t \geq 0
$$

$$
\begin{aligned}
& \mathrm{KCL}: \quad C \frac{d v(t)}{d t}+\frac{v(t)}{R}=0 \\
& v(0)=V_{g} \\
& v(t)=V_{g} e^{-(1 / R C) t}, \quad t \geq 0
\end{aligned}
$$

The form of the natural response is the same:

$$
\mathrm{IC} e^{-t / \tau}
$$

IC is the initial condition and τ is the time constant, a measure of how quickly or slowly the exponential decays.

The form of the RL/RC natural response is

$$
\mathrm{IC} e^{-t / \tau}
$$

The units for the time constant, τ, must be

$$
\begin{aligned}
& \text { A. } \mathbf{s} \text { (seconds) } \\
& \mathbf{X} \\
& \text { B. } s^{-1} \text { (inverse seconds) } \\
& \text { C. } \tau \text { has no units }
\end{aligned}
$$

The RL natural response is

$$
i(t)=I_{s} e^{-(R / L) t}, \quad t \geq 0
$$

Therefore, the time constant, τ, for the RL circuit is
$\begin{array}{lll}\mathbf{X} & \text { A. } & R / L \\ \mathbf{X} & \text { B. } & L / R t \\ \checkmark & \text { c. } & L / R\end{array}$

RL/RC Natural Response

A general solution method:
I. Identify the variable of interest (hint - it's the variable that must be continuous in the circuit):

- For RL, $i(t)$ through L
- For RC, $v(t)$ across C

2. Find the initial value of this variable, either $i(0)=I_{o}$ or $v(0)=V$ 。

- From the problem statement
- By analyzing the circuit for $t<0$, with L replaced by a short circuit or C replaced by an open circuit

3. Find the time constant, τ

- $\tau_{R L}=L / R_{\text {eq }}$ or $\tau_{R C}=R_{e q} C$
- Note that $\mathrm{R}_{\text {eq }}$ is the equivalent resistance as seen from the inductor or capacitor for $t \geq 0$

RL/RC Natural Response

A general solution method, continued:
4. Write the expression for the variable of interest:

$$
x(t)=X_{0} \mathrm{e}^{-t / \tau}, \quad t \geq 0
$$

5. Use simple circuit analysis to calculate any other requested variables.
