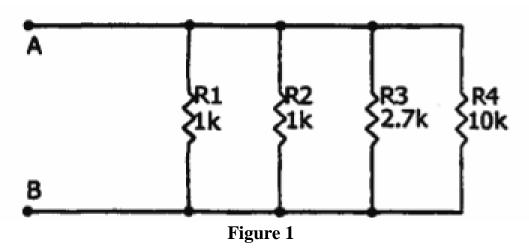
ECE 281

Electrical Circuits and Instrumentation + Laboratory Fall 2016/2017

LAB # 5

31.10.2016

Objective:

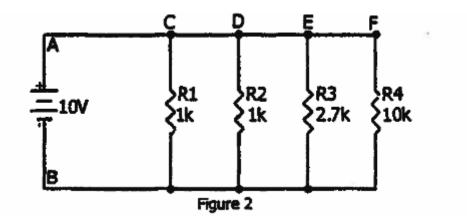

To learn about parallel circuit and Kirchhoff's Current Law

- 1. To verify $\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots + \frac{1}{R_3}$ in parallel circuit
- 2. To verify Kirchhoff's Current Law
- 3. Learn the use of rheostat

1. To verify 1/R_T =1/R_1 +1/R_2 +···.+1/R_3 in parallel circuit (10 Points)

Procedure:

1. Measure each resistor and construct the circuit given in Figure-1 on the breadboard.

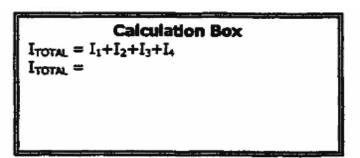


- 2. Measure resistance between A-B.
- 3. Calculate total resistance (R_{eq}) between A-B and compare with the measure value.
- **4.** Remove R_4 , measure resistance between A-B.
- **5.** Add again, and remove R_1 , measure resistance between A-B.

Questions:

- The total resistance is less than $1k\Omega$, why is this so?
- When R_1 removed the change in resistance is not large, why is this so?
- When R₄ removed the change in resistance is not large, why is this so?

2. To Verify Kirchhoff's Current Law (20 Points)



Procedure:

- 1. Take the digital multimeter and set the range to 40 mA dc.
- 2. Construct the circuit shown in figure 2 on the breadboard. Do not connect the positive of the supply to the circuit.
- 3. Connect the red lead of multimeter to the positive of the power supply and black lead to the point C in the circuit.
- 4. Measure the current and record it in Table 1.
- 5. Now remove the multimeter and connect the point A to C using wire.
- 6. Remove the upper end of the resistor R_1 and connect the red lead to the point C and black lead to the upper end of the resistor R_1 .
- 7. Measure the current and record it in Table 1.
- 8. Remove the multimeter and reconnect resistor R_1 as it was before putting the multimeter.
- 9. Repeat steps 6 to 8 for resistors R₂, R₃, and R₄ and record the currents in the Table 1.
- 10. Measure voltage across points A to B and record it.
- 11. Switch off the power supply.
- 12. Do the calculations as indicated in the calculation box.

Table 1:

S/No.	Current between
1.	C and A, I _T =
2.	C and R ₁ , I ₁ =
3.	D and R ₂ , I ₂ =
4.	E and R_3 , I_3 =
5.	F and R ₄ , L=

Questions:

- Is the value of I_T equal to I_{Total} , if so why?
- Write the Kirchhoff's Current Law in words.
- Which resistor has the highest current and why?