
Natural and Step Response of Series & Parallel 
RLC Circuits (Second-order Circuits)

Objectives:
Determine the response form of the circuit
Natural response parallel RLC circuits
Natural response series RLC circuits
Step response of parallel and series RLC circuits



Natural Response of Parallel RLC Circuits

The problem – given initial energy stored in the 
inductor and/or capacitor, find v(t) for t ≥ 0. 



It is convenient to calculate v(t) for this 
circuit because

A. The voltage must be continuous for 
all time

B. The voltage is the same for all three 
components

C. Once we have the voltage, it is pretty 
easy to calculate the branch current

D. All of the above



Natural Response of Parallel RLC Circuits

The problem – given initial 
energy stored in the 
inductor and/or capacitor, 
find v(t) for t ≥ 0. 
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This equation is
Second order
Homogeneous
Ordinary differential equation
With constant coefficients



Once again we want to pick a possible solution to 
this differential equation.  This must be a function 
whose first AND second derivatives have the 
same form as the original function, so a possible 
candidate is

A. Ksin t

B. Keat

C. Kt2
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The circuit has two initial conditions that must be satisfied, 
so the solution for v(t) must have two constants.  Use
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The problem – given initial 
energy stored in the 
inductor and/or capacitor, 
find v(t) for t ≥ 0. 
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is called the “characteristic equation” because it 
characterizes the circuit.

A. True

B. False
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Natural Response of Parallel RLC Circuits

The problem – given initial 
energy stored in the 
inductor and/or capacitor, 
find v(t) for t ≥ 0. 
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The two solutions to the characteristic equation can be 
calculated using the quadratic formula:



So far, we know that the parallel RLC natural 
response is given by

A. The value of 

B. The value of 0

C. The value of (2 - 0
2)

    and  where 0
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There are three different forms for s1 and s2.  For a parallel 
RLC circuit with specific values of R, L and C, the form for s1
and s2 depends on



Natural Response – Overdamped Example

Given V0 = 12 V and 
I0 = 30 mA, find v(t)
for t ≥ 0. 

rad/s  rad/s, 

case! overdamped the is this so  

rad/s 

rad/s 

2

0

000,2050007500000,12

)000,10()500,12(500,12

000,10
)2.0)(05.0(

11

500,12
)2.0)(200(2

1

2

1

21

222

0

2

2,1

2











ss

s

LC

RC

o













Natural Response – Overdamped Example

Given V0 = 12 V and 
I0 = 30 mA, find v(t)
for t ≥ 0. 
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Natural Response – Overdamped Example

Given V0 = 12 V and 
I0 = 30 mA, find v(t)
for t ≥ 0. 
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Now we need the initial value of the first 
derivative of the voltage from the circuit.  The 
describing equation of which circuit component 
involves dv(t)/dt?

A. The resistor

B. The inductor

C. The capacitor



Natural Response – Overdamped Example

Given V0 = 12 V and 
I0 = 30 mA, find v(t)
for t ≥ 0. 
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Natural Response – Overdamped Example

Given V0 = 12 V and 
I0 = 30 mA, find v(t)
for t ≥ 0. 
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Natural Response – Overdamped Example

Given V0 = 12 V and 
I0 = 30 mA, find v(t)
for t ≥ 0. 

You can solve this problem using the Second-Order Circuits 
table:

1. Make sure you are on the Natural Response side.
2. Find the parallel RLC column.
3. Use the equations in Row 4 to calculate  and 0.
4. Compare the values of  and 0  to determine the 

response form (given in one of the last 3 rows).
5. Use the equations to solve for the unknown coefficients.
6. Write the equation for v(t), t ≥ 0.
7. Solve for any other quantities requested in the problem.
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