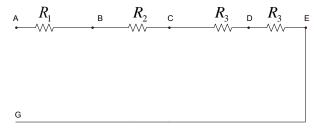
ECE 281

Electrical Circuits and Instrumentation + Laboratory

Fall 2016/2017


LAB#4

1. To verify $R_T = R_1 + R_2 + + R_n$ in series circuit: (25 Points)

Procedure:

1. Construct the circuit given in Figure-3 on the breadboard without power.

Figure 1: Circuit for resistance measurements.

 $R_1=1k\Omega$, $R_2=100\Omega$, $R_3=2.2k\Omega$, $R_4=1.8k\Omega$,

- 2. Use digital multi meter for resistors.
- 3. Find resistive values between A-B, B-C, C-D, D-E, and A-E. Fill Table 2 with these values.
- 4. Calculate total resistance by using $R_T=R_1+R_2+R_3+R_4$ and compare it with the resistance between A-E.

Table 1: Resistance measurements

Measurement no:	Between nodes	Resistance value					
1.	A and B						
2.	B and C						
3.	C and D						
4.	D and E						
5.	A and E						

Questions:

• Is total resistance measured and calculated equal each other?

2. To verify Kirchhoff's Voltage Law: (25 Points)

Procedure:

- 1. Use the previous circuit, just add a voltage source as shown in Figure 4. (V_S=10 Volt.)
- 2. Use digital multimeter as voltmeter and make voltage measurements for the circuit according to the probe connections shown in Table 3 and fill up the table.
- 3. Find the total algebraic voltage drop over the closed circuit.

$$V_{total_drop} = V_{AB} + V_{BC} + V_{CD} + V_{DE} + V_{EA}$$

$$V_{total_drop} = V_{BA} + V_{CB} + V_{DC} + V_{ED} + V_{AE}$$

4. Verify the results with your measurements.

Figure 2: Circuit for voltage measurements.

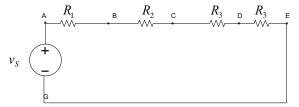


Table 2: Voltage measurements.

Measurement	Probe connections		Voltage	Probe connections		Voltage
No:	Red probe	Black probe		Black probe	Red probe	
1	A	В	V _{AB} =	A	В	$V_{BA}=$
2	В	С	$V_{BC}=$	В	С	$V_{CB}=$
3	С	D	V _{CD} =	С	D	$V_{DC}=$
4	D	Е	$V_{DE}=$	D	Е	$V_{ED}=$
5	Е	A	$V_{EA}=$	Е	A	$V_{AE}=$

Questions:

- Write down the Kirchhoff's voltage law in words.
- Why the sum of voltages is zero in both cases.