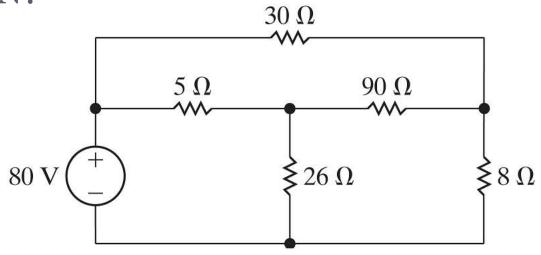
The mesh current method:

- The dual of the node voltage method
- Uses KVL equations around meshes
- Solves directly for currents
- Special cases for dependent sources and for current sources in a mesh.

The basic mesh current method recipe:

- 1. Identify the meshes
- 2. Label each with a mesh current
- 3. Write a KVL equation around each mesh
- 4. Put equations in standard form and solve
- 5. Check your solutions by balancing power
- 6. Calculate quantities of interest

HOW MANY MESHES DOES THIS CIRCUIT CONTAIN?

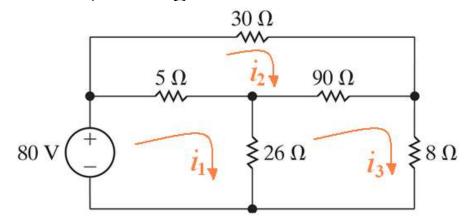


X A. 1 **X** B. 2

✓ C. 3

X_{D.} 4

Find the power associated with the voltage source and the 8Ω resistor, using the mesh current method.



$$i_1 \text{ mesh}: -80 + 5(i_1 - i_2) + 26(i_1 - i_3) = 0$$

$$i_2 \text{ mesh}: 30(i_2) + 90(i_2 - i_3) + 5(i_2 - i_1) = 0$$

$$i_3$$
 mesh: $8(i_3) + 26(i_3 - i_1) + 90(i_3 - i_2) = 0$

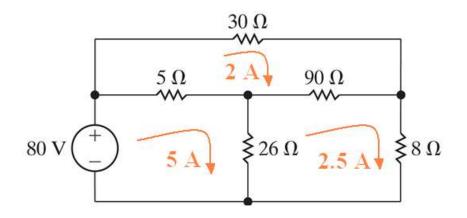
$$i_1(5+26) + i_2(-5) + i_3(-26) = 80$$

Standard form:
$$i_1(-5) + i_2(30 + 90 + 5) + i_3(-90) = 0$$

$$i_1(-26) + i_2(-90) + i_3(8 + 26 + 90) = 0$$

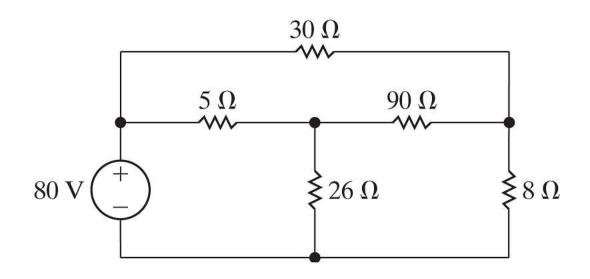
Solution: $i_1 = 5 A$; $i_2 = 2 A$; $i_3 = 2.5 A$

Power balance:



Component	Equation	p [W]
80 V	-(5)(80)	-400
5Ω	$(5-2)^2(5)$	45
90 Ω	$(2.5-2)^2(90)$	22.5
30 Ω	$(2)^2(30)$	120
26Ω	$(5-2.5)^2(26)$	162.5
8 Ω	$(2.5)^2(8)$	50

IF YOU WERE ASKED TO USE THE NODE VOLTAGE METHOD, HOW MANY EQUATIONS WOULD YOU WRITE AND SOLVE?



- X A. 3 KCL, 0 constraint
- **X** B. 2 KCL, 1 constraint
- X C. 1 KCL, 2 constraint
- ✓ D. 2 KCL, 0 constraint

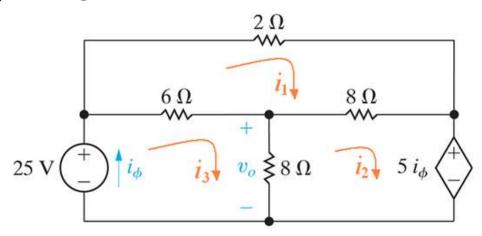
Mesh current method, special cases:

- Dependent sources
- •Current source on the perimeter of a mesh
- Current source shared between two meshes

The modified mesh current method recipe:

- 1. Identify the meshes
- 2. Label each with a mesh current
- 3. Write a KVL equation around each mesh
 - a) Are there any dependent sources? If so, write a constraint equation defining the controlling quantity for the dependent source
- 4. Put equations in standard form and solve
- 5. Check your solutions by balancing power
- 6. Calculate quantities of interest

Find v_0 using the mesh current method.



$$i_1 \text{ mesh}: 2i_1 + 8(i_1 - i_2) + 6(i_1 - i_3) = 0$$

$$i_2 \text{ mesh}: 5i_{\phi} + 8(i_2 - i_3) + 8(i_2 - i_1) = 0$$

$$i_3$$
 mesh: $-25 + 6(i_3 - i_1) + 8(i_3 - i_2) = 0$

constraint : $i_{\phi} = i_3$

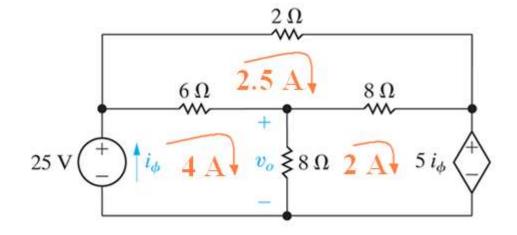
$$i_1(2+8+6)+i_2(-8)+i_3(-6) = 0$$

Standard form:
$$i_1(-8) + i_2(8+8) + i_3(5-8) = 0$$

$$i_1(-6) + i_2(-8) + i_3(6+8) = 25$$

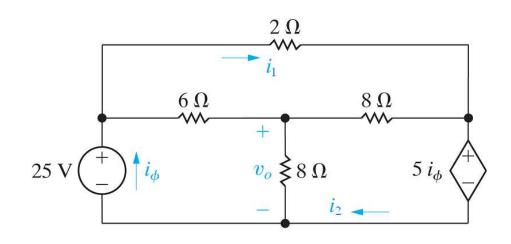
Solution:
$$i_1 = 2.5 \text{ A}$$
; $i_2 = 2 \text{ A}$; $i_3 = i_\phi = 4 \text{ A}$

Power balance:



Component	Equation	p [W]
25 V	-(4)(25)	-100
Dep. source	(2)[5(4)]	40
6Ω	$(4-2.5)^2(6)$	13.5
$2~\Omega$	$(2.5)^2(2)$	12.5
8 Ω (middle)	$(4-2)^2(8)$	32
8Ω (right)	$(2-2.5)^2(8)$	2

If $i_{\phi} = 4$ A, $i_{1} = 2.5$ A, and $i_{2} = 2$ A, what is the current in the middle 8 Ω Resistor from + to -?



✓ A. 2 A

X B. 4 A

X C. 4.5 A

X_{D.} 6 A