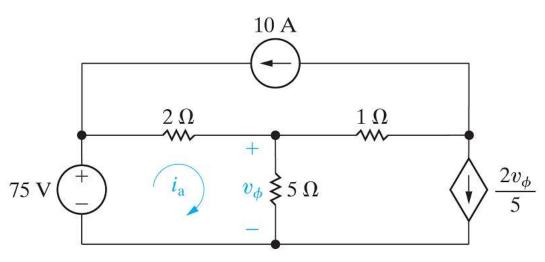
SUPPOSE WE DEFINE TWO ADDITIONAL MESH CURRENTS, IN THE CLOCKWISE DIRECTION, IN THIS CIRCUIT. WHAT IS THE VALUE OF THE MESH CURRENT IN THE UPPER MESH?



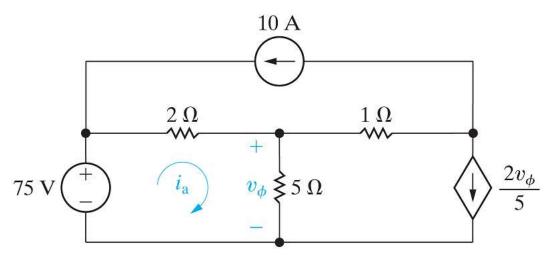
- ✓ B. −10 A
- **X**_{C.} 75 V / 2 + 3

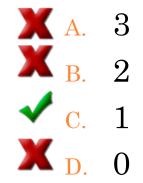
X D. We cannot tell until we analyze the circuit!

The modified mesh current method recipe:

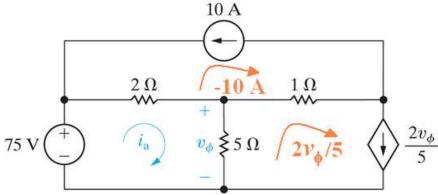
- 1. Identify the meshes
- 2. Label each with a mesh current
 - a) Are there any current sources on the perimeter of a mesh? If so, label the mesh current with the value of the source
- 3. Write a KVL equation around each mesh where the mesh current is unknown
 - a) Are there any dependent sources? If so, write a constraint equation defining the controlling quantity for the dependent source
- 4. Put equations in standard form and solve
- 5. Check your solutions by balancing power
- 6. Calculate quantities of interest

IF WE USE THE REVISED "RECIPE" TO LABEL "KNOWN" MESH CURRENTS, HOW MANY KVL EQUATIONS WILL WE HAVE TO WRITE?





Find i_a using the mesh current method.



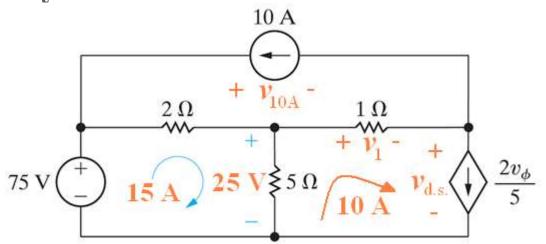
$$i_a \operatorname{mesh} : -75 + 2(i_a - (-10)) + 5\left(i_a - \frac{2v_{\phi}}{5}\right) = 0$$

constraint:
$$v_{\phi} = 5 \left(i_a - \frac{2v_{\phi}}{5} \right)$$

Std. form: $i_a(2+5) + v_{\phi}(-2(5)/5) = 75 - 20$ $i_a(5) + v_{\phi}(-2/5 - 1) = 0$

Solving: $i_a = 15 \text{ A}; \quad v_{\phi} = 25 \text{ V}$

Power balance: $v_1 = (-10 - 10)/1 = -20 \text{ V}$ $v_{ds} = v_1 + v_{\phi} = -20 + 25 = 5 \text{ V}$ $v_{10A} = 75 - v_{ds} = 75 - 5 = 70 \text{ V}$

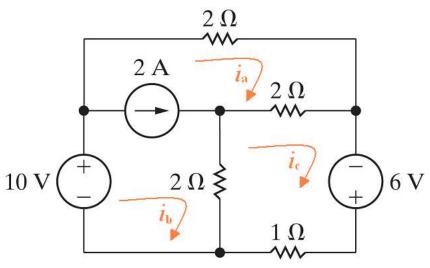


Component	Equation	р [W]
$75~\mathrm{V}$	-(15)(75)	-1125
Dep. source	(5)(10)	50
10 A	-(70)(10)	-700
2Ω	$(15+10)^2(2)$	1250
1 Ω	$(10+10)^2(1)$	400
$5~\Omega$	$25^2/5$	125

THE NODE VOLTAGE METHOD HAS A "SPECIAL CASE" WHEN A CIRCUIT HAS A SUPER NODE – A VOLTAGE SOURCE THAT IS THE ONLY COMPONENT IN A BRANCH CONNECTING TWO NON-REFERENCE ESSENTIAL NODES. THE MESH CURRENT METHOD HAS A SPECIAL CASE FOR "SUPER MESHES", WHICH EXIST WHEN

- X A. A voltage source is on the perimeter of a mesh
- **X** B. A current source is on the perimeter of a mesh
- X c. A voltage source is shared between two meshes
- D. A current source is shared between two meshes

THIS CIRCUIT HAS A SUPER MESH CREATED FROM THE TWO MESHES WITH THE FOLLOWING MESH CURRENTS:

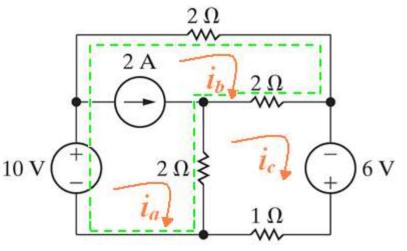


 $\begin{array}{c} \checkmark A. \quad i_a \text{ and } i_b \\ \hline X & B. \quad i_a \text{ and } i_c \\ \hline X & C. \quad i_b \text{ and } i_c \\ \hline X & D. \quad i_a \text{ and } i_b \text{ and } i_c \end{array}$

The modified mesh current method recipe:

- 1. Identify the meshes
- 2. Label each with a mesh current
 - a) Are there any current sources on the perimeter of a mesh? If so, label the mesh current with the value of the source
 - b) Are there any current sources shared between two meshes? If so, create a supermesh by combining the two meshes and erasing the current source temporarily
- 3. Write a KVL equation around each supermesh and each single mesh where the mesh current is unknown
 - a) Are there any dependent sources? If so, write a constraint equation defining the controlling quantity for the dependent source
 - b) Are there any supermeshes? If so, write a supermesh constraint equation
- 4. Put equations in standard form and solve
- 5. Check your solutions by balancing power
- 6. Calculate quantities of interest

Find the power absorbed by the 1 Ω resistor using the mesh current method.



supermesh : $-10 + 2i_b + 2(i_b - i_c) + 2(i_a - i_c) = 0$ $i_c \text{ mesh}$: $-6 + 1i_c + 2(i_c - i_a) + 2(i_c - i_b) = 0$ SM constraint : $2 = i_a - i_b$ $i_a(2) + i_b(2 + 2) + i_c(-2 - 2) = 10$ Std form : $i_a(-2) + i_b(-2) + i_c(1 + 2 + 2) = 6$

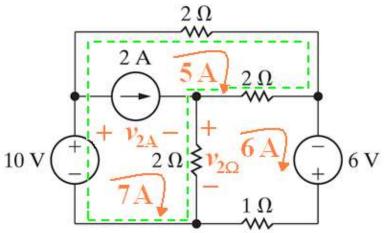
 $i_a(1) + i_b(-1) + i_c(0) = 2$

Solving: $i_a = 7 \text{ A}; \quad i_b = 5 \text{ A}; \quad i_c = 6 \text{ A};$

Power balance:

$$v_{2\Omega} = (7-6)(2) = 2 \text{ V}$$

 $v_{2A} = 10 - v_{2\Omega} = 8 \text{ V}$



Component	Equation	р [W]
10 V	-(7)(10)	-70
6 V	-(6)(6)	-36
2 A	(2)(8)	16
2 Ω (top)	$(5)^2(2)$	50
2Ω (right)	$(5-6)^2(2)$	2
2Ω (middle)	$(7-6)^2(2)$	2
1 Ω	$(6)^2(1)$	36