Node voltage method:

- •Based on writing KCL equations at essential nodes
- •Solves for node voltages
- •The "recipe":
 - 1. Identify the essential nodes
 - 2. Pick a reference node
 - 3. Label remaining essential nodes with voltage values
 - 4. Write a KCL equation at each nonreference essential node
 - 5. Put equations in standard form and solve
 - 6. Check your solutions by balancing power
 - 7. Calculate quantities of interest

Node voltage method:

Find the two voltages and the current indicated.

Node voltage method (continued):

Find the two voltages and the current indicated.

IF v_1 is 60 V and v_2 is 10 V, what is the power associated with the 60 Ω resistor?

- **X**_{C.} 3600 W
- \mathbf{X} D. None of the above

IF v_1 is 60 V and v_2 is 10 V, what is the power associated with the 5 A source?

IF v_1 is 60 V and v_2 is 10 V, what is the current i_1 ?

Node voltage method:

Find the power associated with the current source.

Chapter 4 - Techniques of circuit analysis

Power balance:

Component	Equation	р [W]
2 A	-(2)(50)	-100
$45~\mathrm{V}$	(45)[(50 - 45)/5]	45
1 Ω	$(1)^2(1)$	1
$4 \ \Omega$	$(1)^2(4)$	4
$50 \ \Omega$	$(50)^2/50$	50

THE CURRENT SOURCE IS ABSORBING POWER.

Node voltage method – special cases:

•The circuit contains one or more dependent sources

The circuit has a branch that connects a non-reference essential node and the reference node, and this branch contains a voltage source only.
The circuit has a branch that connects two non-reference essential nodes, and this branch contains a voltage source only.

CHAPTER 4 – TECHNIQUES OF CIRCUIT ANALYSIS Node voltage method with dependent sources: Find the power associated with each source.

KCL at
$$v_1: \frac{v_1 - 50}{6} + \frac{v_1}{8} + \frac{v_1 - v_2}{2} - 3i_1 = 0$$

KCL at $v_2: \frac{v_2 - v_1}{2} + \frac{v_2}{4} - 5 + 3i_1 = 0$

THE TWO NODE VOLTAGE EQUATIONS WE JUST CONSTRUCTED ARE GIVEN BELOW. HOW MANY UNKNOWNS DO THESE EQUATIONS CONTAIN?

$$\frac{v_1 - 50}{6} + \frac{v_1}{8} + \frac{v_1 - v_2}{2} - 3i_1 = 0$$
$$\frac{v_2 - v_1}{2} + \frac{v_2}{4} - 5 + 3i_1 = 0$$

Node voltage method with dependent sources:

•The "modified recipe":

- 1. Identify the essential nodes
- 2. Pick a reference node
- 3. Label remaining essential nodes with voltage values
- 4. Write a KCL equation at each nonreference essential node
 - a) Any dependent sources? If so, write a constraint equation for each one that defines the variable the source depends upon
- 5. Put equations in standard form and solve
- 6. Check your solutions by balancing power
- 7. Calculate quantities of interest

CHAPTER 4 – TECHNIQUES OF CIRCUIT ANALYSIS Node voltage method with dependent sources:

Continue with the dependent source constraint equation. $3i_1$

KCL at
$$v_1: \frac{v_1 - 50}{6} + \frac{v_1}{8} + \frac{v_1 - v_2}{2} - 3i_1 = 0$$
 KCL at $v_2: \frac{v_2 - v_1}{2} + \frac{v_2}{4} - 5 + 3i_1 = 0$
dep. source constraint : $i_1 = \frac{50 - v_1}{6}$
 $v_1(1/6 + 1/8 + 1/2) + v_2(-1/2) + i_1(-3) = 50/6$
Std form : $v_1(-1/2) + v_2(1/2 + 1/4) + i_1(3) = 5$
 $v_1(1/6) + v_2(0) + i_1(1) = 50/6$
Solving: $v_1 = 32$ V; $v_1 = 16$ V; $i_1 = 3$ A

Power balance:

Component	Equation	р [W]
$50~{ m V}$	-(3)(50)	-150
5 A	-(5)(16)	-80
Dep. Source	-[3(3)](32 - 16)	-144
6Ω	$(3)^2(6)$	54
$2 \ \Omega$	$(32 - 16)^2/2$	128
8 Ω	$(32)^2/8$	128
4Ω	$(16)^2/4$	64